Forking and superstability in Tame AECS

نویسنده

  • Sebastien Vasey
چکیده

We prove that any tame abstract elementary class categorical in a suitable cardinal has an eventually global good frame: a forking-like notion defined on all types of single elements. This gives the first known general construction of a good frame in ZFC. We show that we already obtain a well-behaved independence relation assuming only a superstability-like hypothesis instead of categoricity. These methods are applied to obtain an upward stability transfer theorem from categoricity and tameness, as well as new conditions for uniqueness of limit models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forking in Short and Tame Aecs

We develop a notion of forking for Galois-types in the context of AECs. Under the hypotheses that an AEC K is tame, type-short, and failure of an order-property, we consider Definition 1. Let M0 ≺ N be models from K and A be a set. We say that the Gaois-type of A over M does not fork over M0, written A^ M0 N , iff for all small a ∈ A and all small N− ≺ N , we have that Gaois-type of a over N− i...

متن کامل

Building independence relations in abstract elementary classes

We study general methods to build forking-like notions in the framework of tame abstract elementary classes (AECs) with amalgamation. We show that whenever such classes are categorical in a high-enough cardinal, they admit a good frame: a forking-like notion for types of singleton elements. Theorem 0.1 (Superstability from categoricity). Let K be a (< κ)-tame AEC with amalgamation. If κ = iκ > ...

متن کامل

Forking in short and tame abstract elementary classes

We develop a notion of forking for Galois-types in the context of Abstract Elementary Classes (AECs). Under the hypotheses that an AEC K is tame, type-short, and failure of an order-property, we consider Definition 1. Let M0 ≺ N be models from K and A be a set. We say that the Galois-type of A over N does not fork over M0, written A^ M0 N , iff for all small a ∈ A and all small N− ≺ N , we have...

متن کامل

Independence in abstract elementary classes

We study general methods to build forking-like notions in the framework of tame abstract elementary classes (AECs) with amalgamation. We show that whenever such classes are categorical in a high-enough cardinal, they admit a good frame: a forking-like notion for types of singleton elements. Theorem 0.1 (Superstability from categoricity). Let K be a (< κ)-tame AEC with amalgamation. If κ = iκ > ...

متن کامل

Equivalent Definitions of superstability in Tame Abstract Elementary Classes

ELEMENTARY CLASSES RAMI GROSSBERG AND SEBASTIEN VASEY Abstract. In the context of abstract elementary classes (AECs) with a monster model, several possible definitions of superstability have appeared in the literature. Among them are no long splitting chains, uniqueness of limit models, and solvability. Under the assumption that the class is tame and stable, we show that (asymptotically) no lon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Log.

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2016